If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13f^2+30f=0
a = 13; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·13·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*13}=\frac{-60}{26} =-2+4/13 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*13}=\frac{0}{26} =0 $
| 2x=156=4x+192 | | 219-y=130 | | 40x^2-134x+3.33=0 | | 2x+156=4x=152 | | 143-y=276 | | 13.6=1.7z+51 | | 9x-3=3(3x-2) | | 5.3=-2+x | | 2a²+6a-20=0 | | -38+1.9x=9.5 | | 7(c-13)=-56 | | z/4+4=-68 | | 5x-15=2x+27 | | 18x-420=160 | | x2+-12x+52=0 | | 18x-420=16x | | (2x^2+17x-9)/(2x-1)=0 | | 7d+5=68 | | ƒ(x)=x2+8x+12 | | 23x+12=19x+15 | | 1x+5x=16.24 | | 28+2w=52 | | -5(z-6)=6Z | | x2+2x-2188=0 | | 16+20=-4(2x-9) | | 9d+6d-14d+2=9 | | 3a-a+5a-5=9 | | 9h-63=36 | | 4y-8=5y-4 | | 0.16-0.16x=4x*0.1 | | 3z+6z=-7z-8-8z | | 3x^2+12x+13)=2x+5 |